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ABSTRACT

It is generally recognized that interaction of vortices with downstream

blades is a major source of noise production. To analyze this problem

numerically, a two-dimensional model of inviscid flow together with the

method of matched asymptotic expansions is proposed. The method of

matched asymptotic expansions is used to match the inner region of

incompressible flow to the outer region of compressible flow. Because of

incompressibility, relatively simple numerical methods are available to treat

multiple vortices and multiple bodies of arbitrary shape. Disturbances from

vortices and bodies propagate outward as sound waves. Due to their

interactions, either constructive or destructive interference may result.

When it is destructive, the combined sound intensity can be reduced,

sometimes substantially. In addition, an analytical solution to sound

generation by the cascade-vortex interaction is given.

1. INTRODUCTION

Interaction of rotor tip vortices with downstream stators or other blades is commonly

regarded as an important source of noise production (Refs. 1-3). Although it is difficult

to separate vortices from other secondary flow effects, the notion that vortices play an

important role is generally accepted. In order to make the problem tractable, a two-

dimensional model with rectilinear vortices in an inviscid flow is proposed. The cases to

be considered are: a moving vortex interacting with a single body (blade) and with several

bodies, several moving vortices interacting with several bodies, and vortices interacting

with a cascade. Since the unsteady Kutta condition will be imposed, wakes behind the

blades are expected to occur.

The main assumption made here is that the bodies must be acoustically compact. In

other words, the Mach number must be relatively low. This enables us to use the method

of asymptotic expansions to match the inner solution, which is incompressible, with the

outer solution, which is compressible and satisfies the acoustic equation. Since several

bodies may be present, both constructive and destructive interference of sound waves

from neighboring bodies have to be considered. By manipulating the interference, it is

possible to achieve pressure attenuation and reduce sound intensity.

Under the assumption of low Mach number, the characteristic length of the body is in

general much smaller than the acoustic wave length, which implies that the compactness

ratio is small and the flow in the vicinity of the body is not wave like. Dowling and
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Ffowcs Williams (Ref. 4, p.40) stated that all acoustic motions in the vicinity of a

singularity are solutions of Laplace's equations. In the present investigation a body is

represented by surface vorticity elements. Therefore, the inner region surrounding the

body is incompressible and is governed by the Laplace equation. Disturbances generated

in this region propagate outward as acoustic signals. Thus, the outer region is

compressible and governed by the acoustic equation.

Using asymptotic matching to solve aeroacoustic problems in low-speed flows has

been examined previously (Refs. 6-12 for example). In these studies if a body is present,

it is usually of simple shape and amenable to conformal mapping. Here this method is

broadened to include multiple bodies of arbitrary shape. With this extension, interference

of neighboring bodies can be studied.

The time scale for blade-vortex interaction is of the order of L /U o , where L is the

length of the body and U o is the freestream velocity. In this time interval an acoustic

wave has propagated to the distance of L _, which is much larger than L as Mo, the

freestream Mach number, approaches to zero. Thus, there are two disparate lengths, an

indication of a singular perturbation problem.

The advantage of this approach lies mostly in the inner region, where incompressible

solutions for several bodies can be obtained readily by a number of numerical methods.

The method chosen here is Martensen's surface vorticity method. This method, which

has been thoroughly investigated by Lewis (Ref. 5), is convenient for the present purpose,

since the surface is replaced by vorticity elements, which along with moving vortices can

be treated similarly by the Biot-Savart law.

The acoustic equation in the outer region, after the Fourier Transform, becomes a

Bessel equation, whose outgoing wave is represented by a Hankel function. Therefore,

none of the unresolved complications in computational aeroacoustics appears. The

remaining task is to match the two regions and to perform the inverse Fourier transform

to return to the physical space.

2. METHOD VALIDATION

In order to gain confidence of using asymptotic matching to solve aeroacoustic

problems, a simple problem of acoustic radiation by an oscillating circular cylinder is first

examined. It so happens that in this case a term-by-term comparison between the

analytical and asymptotic solutions can be made without recourse to numerical results.

Although this is a simple example, the matching procedures for more complicated

problems are the same. Therefore, more details than necessary are given below in order

to lessen explanations for vortex interaction problems later.

2.1 Inner Solution and its Fourier Transform

The motion of an oscillating circular cylinder as depicted in Fig. 1 is expressed as

U c exp(i_-c?), whose normal component on the surface is U c exp(i_c? ) cos0. Thus

the velocity potential is

_- = _U---c a__ exp(i_ct- ) cos0,
t"
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where U c is the amplitude of oscillating velocity, ff the radius of the cylinder, mc the

angular frequency, F the radial distance, 8- the speed of sound, and { the time. For

small oscillations, the linearized Bernoulli equation is valid and gives the perturbed

pressure in the inner region as

, O0 _ ioocMc cosO exp(io)ct) (1)
P"- _)t R

The symbols in this equation refer to dimensionless quantities and are defined as follows:

' _' 0 coca F

Pi _fioUc2 0 = _Uc_d 09c = --=Uc r =--_ R = M cr

g  8-c
M c =-- t-

F ff

Applying the Fourier transform pair to Eq. (1)

to give

i 'i](R,o)) = f(R,t)e-i°_'dt, f(R,t) = _ f(R,(_o)e'°_'do) (2)

oo

ic°cMc^' --cos0 e-"'_-'°'"dt- i2JrmcMc cos0 8(o.)-wc), (3)
P'- R R

where 8 (o)-tOc) denotes the &function (Ref. 13).

2.2 Outer Equation and its Solution

As mentioned previously, there is an outer characteristic length, which is much

larger than the body length. This length can now be used to rescale the coordinates in

the outer region to give

V
X =Mc_, Y=Mc- _

a a

With the rescaled coordinates held fixed and letting the Mach number tend to zero, the

governing equation reduces to the classical acoustic equation. Its form in polar
coordinates becomes

O-po 1 a po 1 _2 ,Po 8 2po
+ _ ---0, (4)

OR e R OR R 2 aO2 at'-
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where the subscript o refers to the perturbed p in the outer region.

solution in Eq. (1), the outer solution is assumed to be of the form

In view of the inner

P

Po = qo(R, t) c°sO. (5)

Upon substitution of this expression in Eq. (4) and applying the Fourier transform, it
becomes

dZq0 1 d0o 1 )^-_ + (09-" - =0,
dR'- R dR -_ qo

(6)

This is the Bessel equation of the first order, whose solution for the outgoing wave is the

Hankel function of the second kind and is given by

/3o = A H,'2'(c.oR) cos0, (7)

where A is the unknown coefficient to be determined by matching.

2.3 Matching and Inverse Transform

Eq. (7) is to be matched with the inner solution Eq. (3) by the method of asymptotic

matching (Ref. 14). With the aid of Ref. 15 for R---_0, Eq. (7) reduces to

iA 2
^p

Po = cos0.
rco)R

Comparing this expression with Eq. (3) gives

A = rc'-Mccocco6(co-(_oc)

/3'o = 1r2M c(Dc (-0 6(0)-09c)H1_2'(0)R) COS0. (8)

The inverse transform of Eq. (8) is

• 1 i/3_ _Vl _co_Po = _ e"°'dc° - 2

rcM c ¢°c -

,.)

i M ei_°td(_ocos0 to_(co-COc)_ ,_-''(cog)

cos0 H,'2'(O)c R) e i_°'' (9)

This expression represents the far-field sound pressure radiated from the oscillating

cylinder and is equivalent to the analytical solution of Eq. (2-69) in Ref. 4. Since their

solution was written with different notation and the present solution is only valid for a
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__ m

small compactness ratio, 2rc_/Z =tocMc<< 1, where & is the acoustic wavelength, their

solution is first cast in the form

121

, -1 e,,O' H 1 (OgcR)P0 - cos0 ' (10)
iM c I4 "_:_• "o (WcM)

where all quantities have been made dimensionless in accordance to the present notation,

and the primes affixed to the Hankel function refer to differentiations. H0 '2' (co r/c) in

n (2_,Ref. 4 has been replaced by the Hankel function of the first order - 1 tc_ooR), and io3¢

by U c . Under the assumption of a small compactness ratio, the denominator becomes

(Ref. 15)

H_2'(O)cM) =o
i_ O)c2Mc 2

With this expression given, one finds that Eq. (10) is equal to Eq. (9). The last step is

necessary, because the present method is valid for small compactness ratios.

For this simple example, the Fourier integrals can be determined analytically. For

more complicated cases, recourse to numerical methods, such as the discrete Fourier

transform in Ref. 13, is necessary. Therefore, an accurate evaluation of Fourier integrals

is crucial. In order to demonstrate this, we worked out numerically two Fourier integrals

in Ref. 7 and then compared them with Crighton's analytic expressions. The agreement

turned out to be rather good. Details of this comparison will be given later.

3. FORMULATION OF PROBLEM IN INNER REGION

Since the flow in the inner region is incompressible, its complex potential is

W=O+iW= log(---- ) + log(z-_-j) + -
,,=1 2zr "" j=¿

(11)

where z = x + iy represents a field point in the flow field, Zm = Xm -t- iym refers to the mid-

point in the surface vorticity element sin, whose vorticity strength per unit length is Ym.

and dsm is the length of this element (Fig. 2). The symbol zj = xj + iyj refers to the

location of Fj. The vorticity strengths )% and Fj is defined to be positive when clockwise

in accordance with Lewis' convention. The first group of terms refers to M surface

vorticity elements of unknown strengths and the second group to N free vortices of given

strengths. The last term denotes the complex potential of the freestream velocity. All

quantities are dimensionless, which are defined in a similar manner as for Eq. (1). The

characteristic length here is the longitudinal length of the body L, and the characteristic

velocity is the freestream velocity U 0 .
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The derivative of W with respect to z gives the field velocity components u and v in

the x- and y-direction as follows:

M y.,ds y- y., ):u(x,y) = y_,,,=,2a" (x-.r,,,)2+(3,- .v,,

'__. y., ds ., x- x,,,
v(.v, y) = - 2rr (.r-x .... + (y y,,,)2 )2n/=]

ri Y - Yi
+ i=, 2_r (.r-.v 72+_-y,) -"

_'N Fi A._Xi

)2 ):= 2n'(x-x, +(v-v
- - .t

+1

(12)

The free stream velocity is assumed to be always parallel to the x-direction. Thus, the

angle of attack of a body is the angle between the x-axis and the blade chord.

As the field point x and y approaches the surface point Xm and Ym, Eqs. (12) reduce to

Eq. (1 3). The solution of this system determines the unknowns Tin.

_-_,,,=,.,,.,, y"'ds"'Kb(s'''s')+ Y" 4_ _ 2 =---

N

2re _-"F jK' (s " 'z i )- cos0,,
j=l

where

n=l .... M

Kb(S,,.s., ) = (y,, - y.,)cosO,,--(x,,-x.,)sinO.
(x,, -x.,) 2 +(y,, -ym) 2

(Y,, - Y i ) COSO,, - (X,, - Xj ) sin 0,,
K.(s,,,s )=

(x,, - xj )-" + (y,, - y, )2
(13)

Here Kb(Sn, Sm ) and Kv(sn, sj ) are two influence coefficients representing the tangential

velocity components at sn induced by other vorticity elements and by free vortices

respectively. The symbol Rn is the radius of curvature at Sn and On the tangential angle

(Fig. 2). The second term in the first.equation accounts for the self-induced velocity of _,.
at element Sn (Ref. 5).

Eqs. (13) are a system of M linear equations for M unknowns, which can be solved by

any standard method. The Gaussian elimination method was used for every example
shown here.

With the quantities 7m determined, the convective velocities for vortex Fk are known

and are given by

d.r_ dy_

dt uk ' dt vk

For a system of N vortices, there are 2N such equations, whose solutions give the vortex

trajectories. A second-order method is used for time evolution from t to t + At.
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1 [3vk(t ) _ vk(t_At)_t (14)
>'k(t+At) = 3'k(t) + 2

At each time step, uk and vk must be updated by solving Eqs. (12)-(14) anew. The time

step At is generally determined by comparing two solutions, one obtained with At and the

other with At/2. If the agreement is reasonably good, the time step At is chosen,

otherwise the process continues. It turned out that At = 0.0125 was adequate for every

case in this study and used for most of the computations here.

Lewis has cautioned that accuracy may deteriorate, if a vortex is located very near the

surface. Although this is not the case here, it is still useful to assess the accuracy. The

case to be tested is a 10% thick ellipse in a uniform stream parallel to the longitudinal

axis with a stationary vortex situated near the surface. Following the above procedures

with a fixed vortex, a numerical solution was obtained. With the aid of the Joukowski

transformation, an exact solution is also available. Shown in Fig. 3 is the comparison of

surface velocity distribution between the exact and numerical solutions. The agreement is

seen to be good except near the trailing edge. The accurate numerical result is mostly due

to the dense distribution of surface elements (108 elements) and the accurate

determination of slopes and curvatures. The latter is possible, because the geometry is

known analytically.

3.1 Inner Solution and its Fourier Transform

Unlike an oscillating cylinder, which is always unsteady, the potential flow solution

for body-vortex interaction involves a steady part. This part can be neglected, because a

steady motion generates no sound. Therefore, only the unsteady part of the pressure will

be considered. This is accomplished by means of the linearized Bernoulli equation

DO"
P,! = P-Po - (15)

Dt

where d_"refers to the unsteady part of the velocity potential and D/Dt is the time rate of

change in a coordinate system moving with the undisturbed fluid velocity.

For lifting bodies with temporal loading, vortices will be shed continuously. There is

a large number of mutually interacting vortices in the flow field, which are all similar. It

is, therefore, possible to use one term to represent the entire group and Eq. (11) becomes

W=_+iW= iYmdSmlog(--- ) + logz-(t+z,+z_) + -
m=l 2_ - m

(16)

where the symbol zct denotes the initial location of a vortex, which is either far upstream

of the blade or immediately behind the trailing edge for a nascent vortex just being shed.

This is invariant with time. The term t + Zct refers to the position of a vortex at time t
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convected by the freestream velocity U0 (U0= 1) in the absence of the body and is

"steady". The term zL is the perturbed position of the vortex at time t relative to the

unperturbed position, t + Zct. Thus, only the terms 7m and zL in this equation are time-

dependent.

After excluding the steady part, Eq. (16) becomes

W'= .... , 2n" log -(1- _ )
+

[ (t+-)+
log 1- _, z, (17)

Expanding this equation for l Znu/Z[ << 1, and I Zl/Z ] << 1, and defining z = r exp(i0),

where 0 is the angle of the receiver relative to the positive x-axis, and Zm = 6m ×

exp(i0m), one obtains

M iT,,ds,, [ _,, ,o-o_] iF, z lW'=,,_=, _ log,'+iO---_-, e' j 2It -
+ --- (18)

in which only the first order unsteady terms are retained. This equation, as written, is

valid for non-lifting bodies only, where the terms involving log r and 0 are zero,

because with no circulation around bodies _"M y,,ds m = $(3(p/Os)ds = O.
m=l ./

For lifting bodies the unsteady Kutta condition is imposed, resulting in vortex

shedding and the cancellation of the singular terms involving log r and 0 in Eq. (18).

In an inviscid fluid the circulation must be conserved. Thus, an incident vortex

introduced in the upstream is accompanied by a vortex of opposite sense somewhere at

infinity. The same argument holds true for the bound circulation for an airfoil at an

angle of attack. In other words, Kelvin's circulation theorem must be true for a large

closed curve surrounding the whole system in the entire history of the motion. It
follows that the Kutta condition based on the conservation of total circulation for a

single blade becomes

Fb + F1 + k_, + k3 + ... = Fb _°) + Fl (19)

In this equation, Fb _°_ is the bound circulation of the blade under an angle of attack

without the incident vortex and is a constant. For a symmetric body without the angle

of attack, Fb _°_ is zero. Fb is the bound circulation at a later time in the presence of

vortices irrespective of the angle of attack, since induced velocities can create a local

angle of attack. Depending on positions of the incident vortex and the vortices in the

wake, the value of Fb changes with time. For a single blade one vortex is shed after

each computational step and is placed at a distance of At/2 directly behind the trailing

edge. Thus, the symbols k2, k3 .... refer to vortices shed sequentially in time. Note

that the quantity F_, the strength of the incident vortex, appears on both sides of the

equation.

Although there is not a definitive form for the unsteady Kutta condition (Ref. 16),

imposing it is still essential, so that the fluid leaves the trailing edge smoothly.
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Obermeier (Ref. 17) used a similar form in solving the problem of rotor-vortex

interaction. The present form in Eq. (19) resembles, however, that for an oscillating

airfoil given in Ref. 19. This equation in conjunction with Wilkinson's method 2 in

Ref. 5 constitutes the constraint that the static pressures at two trailing elements at the

upper and lower surfaces be equal.

As mentioned previously, there is a singularity in Eq. (18) for a lifting body. This

singularity can be removed by means of Eq. (19). To this end, Eq. (18) is rewritten as

follows with the shed vortices included.

--(1-5>+ ' 'loJl- + log
.,=_ 2n" _ 2n" I_

(20)

After the Kutta condition is applied and the expansion performed, this equation

reduces to

M

W' = ___.. iT.,ds., c5m
,,=t 2/l" r

expi(O., -O) -----
iF 1 z 1 ik, z, ik 3 z 3

2zr z 2re z 2re z

By means of the linearized Bernoulli equation, the unsteady pressure due to the

body-vortex interaction in the inner region becomes

• F_ Dx I Dv_M 3y., ds 6.,sin(O_O._) +--( sin0- 'cos0)
P' =_ Or 2re r 2to- Dr Dr

n/=]

+ k_..z (DA"2 sin0-- Dy2 cos0) + ...
2m" Dr Dr

(21)

where r and 0 as before denote the radial distance and angle from the origin to the

observer. OYm/OZis the time rate of change of surface vorticity per unit length at a

fixed point, while Dx_/D_, DxJD'c .... are the total derivatives, the differences of

vortex positions observed in a coordinate system moving at the freestream speed.

Since the observer is stationary but vortices are in motion, r and 0 will change with

time, except those measured from the surface vorticity elements to the observer.

However, owing to the fact that interactions become important only when vortices are

near the blade, it is therefore assumed that these variable r's and O's can be

approximated by the fixed r and 0 from the origin to the observer. The error incurred

in this approximation is small, since the present concern is with the far-field noise.

It is assumed that one vortex is shed from each trailing edge after each time step.

Thus, there are two trails of wakes for a two-blade system. However, there is only one

equation for the system, i.e., Kelvin's theorem. Therefore, one additional equation is

needed, but it is not obvious at present how to obtain this equation. Under this

circumstance, an assumption is made that Eq. (19) can be applied to each blade
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independently. At first glance, it appears that this procedure decouples two blades.

Fortunately, the coupling still exists, except that it is now through the application of

the Kutta condition. Using Wilkinson's method 2 to unload two trailing edges, one

has to solve four equations from which two simultaneous equations result. The

unknowns in these two equations are Fb's in Eq. (191), which are coupled. A similar

assumption can be made for three or more blades. In addition, a physical interpretation

also may lend support to this assumption. When blades are far apart, it is reasonable to

assume that vortex shedding of one blade is independent or nearly independent from

other blades. Thus, Eq. (19) may be applied individually. As they move closer, this

relationship is assumed to still maintain.

Applying the Fourier transformation to Eq. (21 ) gives the transformed Pi'

/3, =9_____1'M o '_ ds,,_,,,R sin(O-O"')i_ -e-i_dr_=

 os0i o
k_Mo[sinOfDx. ,o,_ cosOi _e-,_dr] + .."dr R _. (22)

where M0 is the freestream Mach number and R = M0 r.

4. OUTER SOLUTION, ASYMPTOTIC MATCHING, AND INVERSE

TRANSFORM

The governing equation in the outer region is Eq. (4). The solution of this equation

is suggested by the inner solution and is assumed to be

M

p,_ = __, p,, (R,t)sin(O,, -0) + [P,s (R,t) + P2, (R,t)+...]sinO
¢_t=l

+ [p_, (R,t) + P2, (R,t) +...]cos 0 (23)

where Pm, Pts, Plc, P2s, P2c.... are functions to be determined. Substituting Eq. (23) into

Eq.(4) and performing the Fourier transform result in a set of ordinary differential

equations, all of which are of the form of Eq. (6), whose solutions for outgoing waves

are the Hankel functions of the second kind. Thus, Eq. (23) becomes

M

[L_ = _, amH, '2' (mR)sin(0 - 0,, )
t/t=[

+ (AI, + A_., +---)Hl_-_(o)R)sin0 + (A_, + A2, +...)Hl_2_(o)R)cosO (24)
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whereAm,Aas,Aac... aretheunknowncoefficientsto bedeterminedbymatching. For
example,Am'sarethecoefficientsfor thesurfacepressurefluctuations,A_ andAlc are

for the moving vortex, and the remaining ones are for the shed vortices.

The steps for matching are the same as for the oscillating cylinder. When this is

done, Eq.(24) becomes

^? D

Po

iFtM°w I4 _:'.., (coR)
4

ik,MoW _,_
- H_- (0_)

4

iMo wM 14_2, i_-,O_drZds,,6,, sin(0-0,,).. 1 (wR)
iT/=] --_

....
where k2, k3 .... refer to the strengths of shed vortices and are zero for non-lifting

bodies. This equation, after the inverse Fourier transform, yields the acoustic pressure

in the far field

t

PO --

sinrA A _fr,_ '2' dog_e_i,O_dEOy_.,.
iM° _ds,,S m ,..-v,,,j--., (09R)e i°'' I dE

8_ ,,=1 -_

A

- iF'M° sin0 iwHt'2_(wR)ei'°'dw f D_-*°_d_
81r __

+ cosO ao)l-l/Z'((.oR)ei_°'do)
81r __

_ .._21_ _. ,mr- _fDx2 -io_e

ik2m°8Jrsin0 jo_ to)KIe aw j---_-e -ag

ikzM° cos0 jf03_-/i _2_ °;D" =+

8re .... DE
+... (25)

It represents the time history of the far-field sound pressure from the far upstream to

the end of computation. However, its value becomes appreciable only in the short

interval when the vortex is near the body. Outside of this range the medium is

essentially silent. This property of fast decay can also be seen in the linear theory of

Howe (Ref. 19).

4.1 Discrete Fourier Transform

At first glance, it appears to be uncertain whether the function in the inverse

transform is absolutely integrable, since ok-I_2)(03R) in Eq. (25) approaches co_/2as 03

--+oo. However, due to the fast decay vortex interaction terms, such as

NASA/TM--2000-210239 11



i37,,/3_ e-i°'_d_, approach 1/032 at infinity. The function as a whole is absolutely

integrable. The remaining work is to evaluate these integrals numerically by means of,

say, the discrete Fourier transform.

In order to establish some confidence that the execution of the discrete Fourier

transform as given in Ref. 13 is done correctly, Crighton's solution in Ref. 7 is

computed numerically. The comparison is shown in Fig. 4 and the agreement is seen

to be good. In this figure, the scaling factor MlP-sin(0/2)/rc r_/2for the acoustic

potential in his Eq. (3.6) was not included and the value for rc r was chosen to be 15.0.

The maximum value of the potential is at t = rc r and the decay is very slow. This is in

striking contrast with the vortex interaction of finite bodies, in which the sound

pressure decays rapidly once the vortex passes the body.

5. CASCADE-VORTEX INTERACTION

5.1 Inner Solution

A cascade is an infinite array of similar blades and cannot in general be regarded as a

compact body. However, if one agrees to the viewpoint that the flow property of a single

blade in a computational domain with appropriate periodic boundary conditions can

represent that of a cascade, a cascade may then be considered to be compact. Based on

this assumption, an attempt may then be made to study sound generation of a cascade-
vortex interaction.

The complex potential for a series of vortices of equal strength placed uniformly at

points z0 + ikb along the y-axis is (Ref. 5 or 20)

u

W 2n" log sinh (-" - -0 ) ,

Upon substitution of ymdsm for F as was done for a single blade, the complex

potential in the inner region of a casdade in a uniform stream together with a series of

moving vortices of strength Fs at points Zs + ikb becomes

Wi = ,,=, 2------_--l°g sinh (:-:o) + 2---_-l°g sinh (--:s) +"
(26)

where the subscript i denotes the complex potential in the inner region. Since there is

only one vortex in each blade pitch, b refers also to the pitch of vortices.

This equation bears a close resemblance to Eq. (11). Therefore, it is reasonable to

expect that there is a counterpart of Eq. (13) for a cascade, whose influence
coefficients are

NAS A/TM---2000-210239 12



K_(s,,,sm) =

2iv 2it
- sinh -- (x,,- x,, ) sin 0,, + sin -- ( v,,- v,, ) cos 0,,

b b " "

"_a" 2to
cosh_(x,, -x,,, ) - cos-- (y,, - v m)

b

Ks(s,,,s ,) =

21r

- sinh -- (x- x ) sin 0,, + sin --
b •

2/17

(y,- y_ ) cos0,,
b

2_ 2_
cosh--(x,,-x)- cos--(y,,- v_)

b • b "

where most symbols have similar meanings as in Eq. (13). In particular, Kc

corresponds Kb in Eq. (13) and K, to K,,. For more details, see Ref. 5 or 20. The

quantities 7m and the vortex trajectories are determined in a similar manner as for a

single blade.

The cascade blades are assumed to be lifting bodies and the Kutta condition has to

be imposed. This will result in arrays of shed vortices in wakes behind trailing edges.

These terms must be added to Eq. (26) to form a complete system. When this is done,

the velocity potential becomes

._t y., ds ., [
¢i = -Y_. 2rr tan-'

m=l 7r y°,)]

tan _ (y -

tanh _ (x -x., )

2/_

_ __ tan -1
tanb(;,- v )

k 2

2It

_ __ tan -]

ta_h b (x_ x,__)ltan b ( y - Y2 )

,o. (27)

where k2, k3 .... refer to arrays of vortices shed at each computational step with the

same pitch as for the blades. In the limit of large Izl or Ixi/x[ <<1, where the subscript i

denotes m, s, 2 or 3 ... in the above expression, Eq. (27) reduces to

@ Ymds,,. F, k. k 3 ,

= - 2.-=7-, ty- so,) y. ) y2) - - ...
n1=1 ZD

(28)

This equation is singular, since terms become arbitrarily large as y _ +co. To

remove this singularity, recourse is made to the Kutta condition, which assumes a

similar form as for a single blade

Fb + Fs + k2 + k3 + ... = Fb (0) + Fs

The notations in this equation are essentially the same as for a single blade, except that

their meanings are slightly different. After the singularities are removed, Eq. (28)

together with the linearized Bernoulli equation Eq. (5) gives
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, _ ds,, _',,, F Dr, k. Dv_ k_ Dv_

Pi =- _ 2-"'if- V,,, ........,,=j " 3t 2b Dt 2b Dt 2b Dt

where p'i denotes the perturbed pressure in the inner region. The Fourier transform of

this equation is

^ • L*, tt!

p, =- _ _ .v, , a.... b t 2 b a ---_-t e -'° ' d t - --=2b _=---_t- d t - ... (29)

5.2 Outer Solution and Matching

The acoustic equation in the outer region is given as

t " p 02 •3 -"P0 3 - P0 P0
+ -0,

_X 2 by 2 at 2

where X and Y are the rescaled coordinates, X = Mox and Y = Moy. In view of the

inner solution, which involves t and x only, the Y term in the above equation may be

dropped resulting in a one-dimensional wave equation

a'-p0 a:p;
- 0. (30)

aX 2 bt 2

This simplification is in agreement with our intuitive notion that the sound wave in the

far field from an infinite array of blades should be independent of Y.

The Fourier transform of Eq. (30) gives

d: o
(.02 ^t+ P0 = 0,

dX 2

whose solution is /30 = A e ±i'°x . In the limit ofx --_ 0, it becomes /30 _= A. The

quantity A may then be evaluated by matching with Eq. (29). After this is done and

the inverse Fourier transform is applied, the sound pressure in the far field becomes
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Under the assumption that changing the order of integration is permissible, this

equation can be greatly simplified. Using the second term as an example, one obtains

4lrb_ --_ d_ e"°_'-_-X'd¢° =-27 D_ ¢5('-_-M°x) d_

F, Dv_

- N

The subscript t-M0 x denotes the retarded time. As seen, only the wave traveling in

the positive x-direction is retained. With this development, the above equation reduces
to

P;=-o,=,W Y°'(--g-t - ,0x
F, Dy; k,_ Dy'2 )
2b (--D-7)'-M°" 2b ( Dt ,-M0, - ... (31)

This is the final form of the first approximation for sound pressure of the cascade in

the far field. It propagates outward without distortion and with no diminution of

amplitude except that the arriving time is somewhat delayed. These are the

characteristics of a one-dimensional wave. The intensity is inversely proportional to

the pitch.

6. RESULTS AND DISCUSSION

Before presenting any results, it is worth making a comparison between a

computation and an experiment. Unfortunately, there is a scarcity of experimental data

for this problem and it appears that only an order-of-magnitude comparison is possible.

Booth's data (Ref. 21) will be used here for comparison. However, there is at least one

major difference between the test and computation. Vortices in his experiment either

burst or split into fragments before reaching the blade. This condition cannot be

simulated in the present computation and is likely to lead to a disagreement. In

addition, the measured pressure, on which the experimental sound production is based,

included only 25% of the surface pressure fluctuation and neglected other sound

producing mechanisms. The acoustic field in Ref. 21 was evaluated in front of the

blade, where the magnitude is very small. This may be another source of the

difference. In spite of these discrepancies, a comparison may still be useful.

There were four different vortex trajectories recorded in Ref. 21 for the zero angle-

of-attack case. The case of y/c = -0.219 was chosen for comparison, because the

blade-to-vortex miss distance was the largest. This value is equivalent to Yv = -0.156

in the computation, a distance of 0.156 chord lengths below the centerline. The

measured vortex strength was given as 0.49 m2/sec., which is equivalent to F = 0.524,

a vortex of high intensity in an extremely low free stream. For the convenience of

comparison, the calculated dimensionless quantities have been converted to the
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dimensionalquantitiesin pascalsandsecondsasusedin Ref. 21. Theareabetween
twodashedcurvesrepresentsapproximatelytherangeof testdatainBooth's Fig. 6b.

Thepredictedacousticpressureshownin Fig. 5 consistsof threeparts:theunsteady
surfacepressure,themovingvortexandthewake. Althoughthesoundproductionby
thewakeis usuallynegligible,theapplicationof theKuttaconditionis still important,
sincewithout it thetemporalvariationof thesurfacepressurewill notbecorrect. No
plotof thewakeisgivenhere,but it will beshownlater in anotherexample. Its
influencecan,however,beseenin the insertin Fig. 5, wherethevortextrajectoryis
bentslightly downward.This bendingwasalsomentionedin Ref. 17. For various
reasonsmentionedabove,thecomparisoninFig. 5 canonly beconsideredasanorder-
of-magnitudecomparison.

6.1SingleBlade

After thisdigression,wenowreturnto themain concernwith vortex interaction.
Shownin Figs. 6 and 7 are four examples of one incident vortex interacting with a

symmetric blade (NACA 0012). These interactions, though simple, play an important

role as interferences and more complex cases are to be examined. For this reason,

some explanations are in order.

The observer in both figures is directly above the blade at a distance of 50 chord

lengths from the leading edge, which is the origin of the coordinate system, and at 90 °

from the positive x-axis (r = 50 and 0 = 7/2). The freestream Mach number Mo is 0.2.

(Except as stated, r = 50, 0 = n/2 and M0 = 0.2 for every computation henceforth.) The

initial position of the vortex is 5 chord lengths upstream of the leading edge in the x-

direction and +0.1 chord lengths in the y-direction (x, = -0.5 and Yv = _+0.1 ). The sense

of the vortex is either positive or negative (positive when clockwise in accordance with

Lewis" convention). The vortex passes above the blade in Figs. 6 and below the blade

in Figs. 7.

The sound pressure in Fig. 6a is caused by a counter-clockwise rotating vortex. If its

sense is reversed with all other parameters remaining unchanged, the sign of the sound

pressure also will be reversed and the magnitude will be slightly higher. In addition, the

vortex trajectory and the vortex-to-blade miss distance are somewhat different (Fig. 6b).
These variations are due to the different manners that an incident vortex interacts with the

blade. It is said that a vortex produces sound mainly when it cuts across base flow

streamlines near an edge (see, for example, Howe or Ref. 11).

In computations with lifting bodies, wakes always occur due to the local angles of

attack brought about by the induced velocities even though blades are parallel to the

freestream. Thus, in the examples of Figs 6 and 7 a part of the solution is the trail of shed

vortices (wake), but this is not shown in the above figures because of the limited space.

An example of the wake pattern, however, will be given in Fig. 14b.

Figs. 7 depicts two examples for the vortex passing below the blade. The acoustic

pressure in Fig. 7a is equal to that in Fig. 6b, except the sign. From the viewpoint of

noise attenuation, this property of sign reversal is significant and will be exploited

later. Since the body is symmetric, this case is equivalent to the case of a clockwise

rotating vortex passing above the blade with the observer below the body. By the same

token, the acoustic pressure in Fig. 7b is a counterpart of Fig. 6a.
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To present a more complete picture, the directivity pattern for Fig.6a is shown in

Fig. 8a and is seen to be akin to that of a dipole. The patterns for others in Figs. 6-7

are similar and will not be given. The directivities here are the standard polar

diagrams with the rms pressures as the radial distances. The sample time for the root

mean square is somewhat arbitrary and was taken to be the range where the sound

pressure is visually discernible. The origin of the coordinates is at the leading edge of

the blade or at the leading edge of the upper blade, if two blades are present. The

maximums in Fig. 8a occur at e = n/2 and 3n/2. The former corresponds to the

observer's position in Figs. 6a.

Knowing the occurrence of sound pressure of opposite signs, one can take

advantage of this property to reduce noise. In an ideal situation such as that in Fig. 9a,

the cancellation is complete and sound is absent. Normally even if there is no sound

produced by the surface, the wake, if it exists, can still generate sound of very low

intensity. In this case of total destructive interference, the Kutta condition is

automatically satisfied and there is no wake. For this reason, the directivity is also

zero.

For the complete destruction to occur, the blade has to be symmetric, and vortices

are of equal magnitude, opposite sense and at an equal distance from the blade. They

also must pass the blade concurrently. The last condition of concurrent arrival is a

very stringent requirement. In other words, the initial positions of these two vortices

must be equal horizontally. If instead of two isolated vortices, there are two streams of

closely packed vortices, some of them will probably arrive almost concurrently.

Two vortex paths in Fig. 9a are symmetric with respect to the blade. This is

desirable but is not essential. For instance, the noise attenuation in Fig. 9b is still

substantial, even though the lower vortex path in Fig. 9b is 1.5 times farther from the

chord than the upper path. In comparison with a single vortex in Fig. 6a, the overall

noise intensity is lower and the corresponding directivity in Fig. 8b is also considerably
smaller.

Thus far the strengths of both vortices are equal. This need not be the case as

shown in Fig. 10a, in which the vortex paths are not symmetric, the strengths are not

equal and yet the noise is lower.

The above are three examples with two incident vortices, one on each side. In the

following, examples are given with both vortices on the same side of the blade. This is

to demonstrate that the primary reason of noise attenuation is the presence of a pair of

vortices of opposite sense as in Fig. 10b. Notice that the induced velocities by vortices

on themselves are in the opposite direction of the free stream. Thus, the arrival time at

the blade is delayed, which is reflected by the longer time for the peak pressure to

appear. The converse also is true. In this case, the signals will be somewhat clustered.

Two more examples will be presented for a single blade. One is the case that the

blade is at an angle of attack of 5 °. The attenuation in Fig. 1 la is considerable. This is

mainly due to the small separation distance between two vortices and not to the angle

of attack. If this distance decreases further, destructive interference also will be larger.

The second case is shown in Fig. 1 lb, where a pair of vortices of same sense is

convected by the free stream while rotating about their centroid. Based on the

previous assumption that attenuation is the result of two vortices of opposite sense, one

may anticipate a twofold increase in noise in Fig. I lb as compared with Fig. 6a. This
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is, however, not the case. The reason may be that the blade-vortex interaction for a

rotating pair is sufficiently complex that cannot be explained by the simple addition.

The evidence here and elsewhere indicates that a pair of rotating vortices acts

somewhat like a single vortex as far as sound production is concemed. Note that a pair

of spinning vortices without any blade will also produce sound (Ref. 6). However, its

intensity is very low and cannot be easily discerned in this figure.

6.2 Two or More Blades

Since the present method is not limited to a single body, attention is now directed to

vortex interactions involving two or more blades with two or more incident vortices.

One example in this group is a pair of stacked blades somewhat like a two-dimensional

inlet with a single vortex moving through the passage as in Fig. 12a. The separation

distance between two blades is sufficiently large, so that the blade-to-blade influence is

relatively small. The resulting sound pressure is, therefore, similar to that of Fig. 7a

for a single blade. Note that two blades parallel to a uniform stream in the absence of

incident vortices can still induce circulation on each other, but the total strength of
circulations is zero in accordance with Kelvin's theorem.

Although the directivity pattern for this case, if plotted, is similar to Fig. 8a, a

radical change can take place, if another vortex is introduced. For instance, the sound

pressure in Fig. 12b received at 0 = r_/2 is nearly zero. At first glance, one may think

that this is a case of complete destructive interference. This is, however, not the case

after seeing the directivity diagram in Fig. 8c. The overall intensity is actually

increased but the directivity pattern has rotated 90 ° with the minimums in the vertical

direction where the signal is received. Attenuation is still possible by simply shifting

the lower vortex upward as illustrated in Fig. 13a. Although the magnitude of sound

pressure in this figure is not too much smaller than others, the overall intensity is lower

as can be seen by comparing the directivity of Fig. 8c with that of Fig. 8d. The latter is

the directivity pattern for Fig. 13a. Moreover, the configuration in Fig. 8d is rotated

and the mid-section is bulged out. The direction of maximum sound intensity is,

therefore, different. The lower vortex in this case interacts with both blades, since it

passes through almost the middle of the passageway. This likely is the underlying

mechanism of attenuation. In order to see this effect, the sound pressures from both

blades are plotted separately in Fig. 13b. In this figure, the extent of attenuation,

though not large, can clearly be seen. Note also that for the purpose of attenuation the

precise position of the lower vortex is not critical, as long as it falls within a certain

range.

A further reduction of sound generation is possible, if two blades form a divergent-

like "channel" as in Fig. 14a. The geometry of the blades is the same as before, except

the outward rotations of 5 ° . The upstream positions for two incident vortices in this

case are also the same as in Fig. 13a. Since two blades rotate outward and the vortex-

to-blade miss distances become larger, reduction in sound intensity is expected. The

extent of reduction as shown in Fig. 15a is, however, not foreseen.

Before proceeding any further, it is time to include a snapshot of the wake

formation behind the blades. As mentioned previously, the Kutta condition is imposed

in computations with lifting bodies. Therefore, wakes, though not plotted, are a part of
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solutions. The configuration in Fig. 14b should be a part of the insert in Fig. 14a, if

more space is available. The two blades in Fig. 14b correspond to the blades in the

insert of Fig. 14a. In the present formulation and for the convenience of bookkeeping,

one vortex is shed from each trailing edge at every time step regardless of its strength.

For instance, when the incident vortex is far from the body, the circulation around a

large closed curve is essentially invariant, and yet the Kutta condition is still applied

and vortices are still shed. The strengths of these vortices are nearly zero, which

manifest as straight lines in Fig. 14b. Only the curved portions are created while

vortices pass near the blades and contain significant vorticities.

As anticipated, a pair of like-signed vortices convected through an inlet-like

passage will cause the noise level to increase as indicated in Fig. 16a and the

accompanied directivity plot in Fig. 15b. Although a similar technique as in Fig. 13a

can be used to reduce noise level by lifting the lower vortex trajectory upward, the

underlying mechanism appears to be different. With two vortices of same sense, each

will rotate about the centroid with a constant speed. The end result is to cause vortices

moving away from the blades and, therefore, to lessen sound production. Thus, as

long as there are two vortices in the passage, a judicious arrangement of their positions

can promote destructive interference.

In Section 6.1, two examples were given to demonstrate that: (a) sound production

is not affected materially by the angle of attack (Fig. 11 a), and (b) a pair of rotating

vortices acts more like a single vortex than two separate vortices (Fig. 1 lb). These

properties are found to be essentially valid for two stacked blades.

In the preceding examples, the separation distance between two blades was fixed to

be of one chord length. Change of this distance is expected to have an effect on sound

production. However, a decrease of this distance by a moderate amount does not seem

to have much effect on the noise intensity or the directivity pattern (Figs. 16b and 15c),

while an increase by a similar amount proportionally elevates the intensity

substantially (Figs. 17a and 15d). The reason appears to be that as the separation

distance increases, sound production from the upper blade and from the lower blade

becomes essentially additive with little coupling between them, and the intensity

becomes higher. As the distance reduces, the coupling increases, more attenuation

results and the intensity becomes lower. Note that the observer's position in Figs. 16b

and 17a is at 0 = 45 °, so that the received sound pressure is not zero. If it were 90 °,

sound pressure will be zero as in the case of Fig. 12b.

Although the separation distance does not have a major effect on sound production,

staggering (two leading edges are not aligned vertically) does. This is somewhat

equivalent to the non-concurrent arrival of two vortices. Thus, the more it is

staggered, the higher is the sound. The effect of staggering is shown in Fig. 17b. In

view of its directivity pattern in Fig. 18a, the noise intensity has been greatly increased.

Note that the receding distance of the lower blade is relatively small and equals 0.25

chord lengths. There are two methods to bring down noise in this case. One is the

usual procedure of repositioning vortices to attenuate sound generation. This method

will not be repeated here. The other is to reduce the size of the lower blade. The

reduction in noise is only moderate and is shown in Figs. 18b and 19a.

As the observer moves farther away from the interaction, the received sound is

expected to decrease. The relationship is not exactly linear as can be seen in Eqs. (10)
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and(25). In orderto seethis effect,Fig. 19bis includedin whichtheobserver is 100

chord lengths from the origin as opposed to the usual distance of 50 chord lengths with

all other parameters unchanged.

Next consideration is given to the case of three vortices interacting with 3 stacked

blades (Fig. 20b). In order to see the difference between this configuration and the

corresponding case of two blades, Fig. 20a is first calculated, whose directivity pattern

is in Fig. 18c. Both the size and shape of this pattern are seen to be somewhat similar

to those in Fig. 15b. This seems to be reasonable, since in these two cases the

strengths of vortices are equal, they are all negative and the vortex-to-blade miss

distances are nearly equal, although the dispositions of vortices are different. The case

of 3 blades in Fig. 20b is merely an extension of Fig. 20a as is evident by comparing

these two figures. The unsettled question is whether its acoustic characteristics will

approach asymptotically to that of a linear cascade as the number of stacked blades
increases.

6.3 Nonlifting Bodies

In all previous cases, only lifting bodies have been studied. It would be of interest

to give two examples corresponding to two previous cases but with nonlifting bodies.

In these cases there will not be any wake and there is no need to impose the Kutta

condition. However, it was found that the calculated circulation around the body,

though small, was not in general zero. This discrepancy has to be removed, because if

the circulation is not zero, the singularity in Eq. (18) will prevail, which will then have

an adverse effect on the sound production. In order to impose this zero circulation

condition, a procedure similar to Wilkinson's method 2 for the Kutta condition was

employed.

The first example is similar to Fig. 6a and is shown in Fig. 21a. It is interesting to

note that there is no high peak in the sound production and the overall intensity is

considerably lower than that in Fig. 6a. The sound pressure distribution is seen to be

antisymmetric with respect to the mid-point. This is likely due to the symmetry of the

body. The second example is a counterpart of Fig. 10b. Here the destructive

interference is obvious and is more effective than that for a lifting body. In view of

these two examples, it seems to indicate that if a lifting body can be replaced by a

nonlifting body, the noise production by vortex interaction will be markedly lower.

Although not evident, the geometry of this non-lifting body bears similarity to an

NACA-0012 airfoil in the sense that it is essentially formed by two front halves of the

airfoil. Its thickness is also approximately equal to 12% of the length. Thus, a large

decrease in noise production by non-lifting bodies is likely due to the absence of the

trailing edge.

7. CONCLUSION

The results of this study may be summarized as follows: (a) In the section of method

validation, it is shown explicitly that the method of matched asymptotic expansions is

a viable method for analyzing sound generation. (b) A procedure is devised to

examine the interaction of multiple bodies with multiple vortices. (c) Under various
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conditions,it is demonstratedthatdestructiveinterferenceis apossiblemechanismfor
suppressingnoiseproduction. (d)A solutionto soundgenerationbycascade-vortex
interactionis given. (e)Basedonnumericalresults,it appearsthatsoundgeneration
by vortex interactionwith nonlifting bodiesismuchlower thanthatwith lifting bodies.
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Figure 1 .--Cylinder oscillating in the x-direction.

Oc = 0 c exp(i_j).

Sn

Figure 2._Surface vorticity elements on a

two-dimensional body.
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Figure 9.mTime history of acoustic interference. (a) Complete destruction: F = -0.1,

xv = -5.0, Yv = 0.1; IF= 0.1, xv = -5.0, Yv = -0.1. (b) Partial destruction: F = -0.1,
xv = -5.0, Yv = 0.1; lr = 0.1, xv = -5.0, Yv = -0.15.
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Figure 10.--Time history of acoustic interference. (a) Partial destructive interference:

F = -0.1, xv = -5.0, Yv = 0.1; F = 0.085, xv = -5.0, Yv = -0.15. (b) Partial destructive
interferenced: F = -0.1, Xv = -5.0, Yv = 0.1 ; F = 0.1, Xv = -5.0, Yv = 0.2.
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Figure 13.--Decomposition of acoustic pressure: F = -0.1, x v = -5.0, Yv = -0.12; r = 0.1,

Xv = -5.0, Yv = -0.72. (a) Acoustic pressure of the entire system. (b) --, acoustic

pressure from the lower blade; ..... , acoustic pressure from the upper blade.
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xv = -5.0, Yv = -0.72. (a) Time history of acoustic pressure from two divergent
NACA-0012 blades of 5 °. (b) A snapshot of wakes.
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Figure 16.--Two examples of acoustic interference. (a) Two same-sense vortices:
I" = -0.1, Xv = -5.0, Yv = -0.12; F = -0.1, Xv = -5.0, Yv = -0.88. (b) Two opposite
sense vortices; gap between blades = 0.75 chord lengths; observer's angle = 45°;
F = -0.1, xv = -5.0, Yv = -0.12; F = 0.1, xv = -5.0, Yv = -0.63.
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Figure 17.--Two additional examples of acoustic interference. (a) Conditions similar to

Fig. 16b, except gap between blades = 1.35 chord lengths, and Yv = -1.23 instead of

-0.63. (b) Conditions identical to Fig. 16b, except that two blades are staggered.
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Figure 19.--Time history of acoustic pressure for two different observer's distances.

(a) Two staggered blades with a smaller lower blade; observer's distance = 50 chord

lengths; F = -0.1, x v = -5.0, Yv = -0.12; r = 0.1, x v = -5.0, Yv = -0.63. (b) Conditions
identical to (a) except observed's distance = 100 chord lengths.
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Figure 20.--Comparison of acoustic pressures between two and three stacked blades.

(a) Gap between blades = 0.75 chord lengths; r = -0.1, x v = -5.0, yv = 0.12; F = -0.1,

x v = -5.0, Yv = --0.63. (b) Gap between blades = 0.75 chord lengths; F = -0.1, x v = -5.0,
Yv = 0.12; F = -0.1, Xv = -5.0, Yv = -0.63; F = -0.1, Xv = -5.0, Yv = -0.87.
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Figure 21 .---Time history of acoustic pressure from non-lifting bodies. (a) F = -0.1,
xv = -5.0, Yv = 0.1. (b) F = -0.1, xv = -5.0, Yv = 0.1; F = 0.1, xv = -5.0, Yv = 0.2.
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